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1. INTRODUCTION
To make networks more reliable, enormous resources are

poured into all phases of the network-equipment lifecycle.
The process starts early in the design phase when simula-
tion is used to verify the correctness of a design, and con-
tinues through manufacturing and perhaps months of rigor-
ously trials. With over 7,000 Internet RFCs and hundreds
of IEEE standards, a typical piece of networking equipment
undergoes hundreds of conformance tests before being de-
ployed. Finally, when deployed in a production network,
the equipment is tested regularly. Throughout the process,
a relentless battery of tests and measurement help ensure
the correct operation of the equipment.
Not surprisingly, to support the testing e↵ort, there is

a multi-billion dollar industry building and selling network
test equipment for all stages of design, development and
deployment. It is common for a large network equipment
vendor to spend tens of millions of dollars per year on test
equipment (from companies such as Ixia, Spirent, Fluke, and
Emulex/Endace) to test physical layers, protocols and ap-
plications. Researchers and educators would also like to use
test equipment to understand current networks and when
prototyping new ideas. Unfortunately, commercial test equip-
ment is closed, proprietary - making it di�cult to try out
new ideas - and high prices place it well beyond reach of
most university teaching and research laboratories.1

We believe that it is no longer necessary to build network
testers upon specialized, proprietary hardware; it is now pos-
sible to develop open-source network testers that run at line-
rate, particularly at 10Gb/s. The NetFPGA-10G, Xilinx
V5TXT and Terasic DE5-Net, are all programmable, open-
source hardware platforms that can be programmed to test
networks at line-rate. For example, the NetFPGA-10G (de-
veloped by the authors) has 4 ⇥ 10GbE interfaces, is based
on an FPGA, and is available to the research and teaching
community for less than $2,000.
1Even a modest two port 10GbE network tester capable of
full line-rate costs upward of $25,000.

We therefore set out to create an open-source network
tester (OSNT), primarily for the research and teaching com-
munity. Although, we believe that as an open-source com-
munity grows, a low-cost open-source network tester would
be as valuable to the networking industry as a whole. A low-
cost tester could also enable large-scale testing with tens to
thousands of testers, that was financially infeasible before.

In this paper we propose an architecture for an extensible
open-source network tester, we describe a first prototype
running on the NetFPGA open-source hardware platform
and present early-day benchmarks indicating the tester in
operation.

2. PROPOSED ARCHITECTURE
Key design goals for the OSNT architecture were low cost,

flexibility, high-precision time-stamping and packet trans-
mission, as well as scalability. In order to satisfy these goals,
we made a series of choices which are described in the fol-
lowing paragraphs.

Figure 1: NetV — an approach for NetFPGA Vir-
tualization.

At a system-level, we provide the means to join and syn-
chronize numerous OSNT cards. This lets a user to per-
form measurements throughout the network, such as end-to-
end latency and jitter, packet-loss, and congestion control.
While we clearly need to generate tra�c and capture tra�c,
we don’t always need precisely one of each. We therefore
allow the user to pick a mix of both, using an approach we
call NetV, illustrated in Figure 1. Two wrappers let us run
multiple NetFPGA pipelines inside: the V2P (Virtual to
Physical) wrapper is a per-port arbiter that shares access
among each of the 10GbE and PCIe interface-pipelines; the
P2V (Physical to Virtual) wrapper copies every incoming
packet to the ingress virtual interface of all the pipelines.



This approach lets us create new pipelines, while keeping
them isolated from each other.

2.1 Traffic Generation
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Figure 2: The architecture for OSNT tra�c gener-
ation system.

The OSNT tra�c generator generates packets and then
analyses their statistics upon return, as illustrated in Fig-
ure 2. It consists of several micro-engines, each of which
generates tra�c according to a given tra�c model, list of
flow values and data patterns from which we generate packet
size, rate and inter-packet delays. The tra�c generator con-
sists of five functional units: The Arbiter selects packets and
forwards them at their departure time. The Delay Module
(DM) and Rate Limiter (RL) control delay and rate for each
flow, before passing packets to the Timestamping (TS) mod-
ule. The timestamp is appended to the packet and is used
to measure latency and jitter. Finally, the packet is passed
to the (10GbE) MAC which transmits it onto the wire.

The tra�c generator can also receive incoming packets
and produce port- and flow-level statistics. Received pack-
ets enter the system through a MAC, and are aggregated
through a round-robin input arbiter, before arriving at the
statistics collection module. The resulting statistics are re-
layed to the software using the programmed input/output
(PIO) interface.

2.2 Traffic Monitoring
Figure 3 shows the tra�c monitoring pipeline which pro-

cesses (and filters) packets at line-rate and generates high
precision timestamps and statistics. We assume that the
pipeline processes minimum sized packets at full line-rate,
as you would expect from hardware. However, the host may
not be able to process packets at line-rate, so we thin tra�c
in two ways. First, a 5-tuple (protocol, IP address pair, and
layer-4 port pair) filter - in the “Core Monitoring” module -
identifies flows of interest. Only packets in a flow of interest

are sent to the software, while all other packets are dropped.
Second, we truncate packets to a fixed-length (sometimes
called a snap-length) along with a hash of the entire original
packet.

Providing an accurate timestamp is critical to monitoring
tra�c. Our design stamps packets with a 64-bit timestamp

as soon as they arrive from the MAC (minimize queueing
jitter). The upper 32-bits count seconds, while the lower
32-bits count fractions of a second with a resolution of 233ps.

Figure 3: The architecture for OSNT tra�c moni-
toring system.

3. PROTOTYPE AND DISCUSSIONS
By building our prototype on the NetFPGA-10G plat-

form [1], we have inherited a number of constraints from
that system. One example of this is in the table size such as
the filter TCAMs; whose size is traded directly against the
overall design-size.

While the internal NetFPGA datapath can accommodate
full line-rate, minimum-sized packets, the PCIe interface
lacks the bandwidth to pass unaggregated tra�c to the host
CPU. This interface uses an MTU of 128 bytes. Without
careful packing, a näıve implementation of DMA and device
driver may achieve as low as 33.5% utilization (for trans-
actions of 129 byte packets). The use of an opportunistic
snap-length (cut) size while adding a unique hash of the
complete packet, can significantly improve the utilization of
the PCIe. Despite the fact that the hash adds an overhead
of 128 bits per packet, it is critical in packet identification
which is required for many end-to-end measurements such
as latency measurements and packet loss-events. This capa-
bility of compressing packet information allows us to scale
testing to a maximum packet rate of approximately 21.7 Mil-
lion packets per second.
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